Columbia Engineering researchers have invented a technique for manufacturing complex microdevices with three-dimensional, freely moving parts made from biomaterials that can safely be implanted in the body. Potential applications include a drug-delivery system to provide tailored drug doses for precision medicine, catheters, stents, cardiac pacemakers, and soft microbotics.
Most current implantable microdevices have static components rather than moving parts and, because they require batteries or other toxic electronics, they have limited biocompatibility.
The new technique stacks a soft biocompatible hydrogel material in layers, using a fast manufacturing method the researchers call “implantable micro-electromechanical systems” (iMEMS).